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Abstract
It is shown that a new class of classical multi-component super KdV equations
is bi-super Hamiltonian by extending the method for the verification of graded
Jacobi identity. The multi-component extension of super mKdV equations is
obtained by using the super Miura transformation.

PACS number: 02.30.−f

1. Introduction

The theories of infinite-dimensional super integrable systems have drawn a lot of attention in the
last two decades, for example, see [1, 2]. Research on the classical multi-component integrable
systems has also become quite active more recently [3–9]. In this work we construct an
extension of classical multi-component Korteweg de Vries (KdV) system to multi-component
super integrable systems by employing a bi-super Hamiltonian formalism. Such systems are
called super because they contain both bosonic and fermionic fields. However, there is no
supersymmetry transformation between the fields as known from the one-component super
KdV equations [10–12]. On the other hand, there also exist supersymmetric extensions of KdV
equation, namely, there exist supersymmetry transformations but these bi-super Hamiltonian
systems have a non-local nature [13–15].

We first introduce skew-symmetric super Hamiltonian operators. It is shown that they
satisfy the graded Jacobi identity by using the method of prolongation [12, 16]. The set
of multi-component super integrable partial differential equations is derived by introducing
associated super Hamiltonians. Furthermore, introducing super Miura transformation, a
multi-component super extension modified Korteweg de Vries (mKdV) system is obtained.
The paper is organized as follows. In section 2 we investigate the properties of super
Hamiltonian operators. It is shown that the second Hamiltonian operator satisfies the graded
Jacobi identity by means of constraint between the constant parameters of the system while
the first does trivially. In section 3 the multi-component super evolution equations are derived
from super Hamiltonians . In section 4 we obtain the multi-component super mKdV equations
by using multi-component super Miura transformation. It is observed that the new systems
are reduced to well known systems of one-component super evolution equations and in the
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vanishing fermionic fields limit we get the multi-componentand one componentcorresponding
KdV systems.

2. The super Hamiltonian operators and Jacobi identity

This section is devoted to the study of properties of super Hamiltonian operators. We first
consider a set of fieldsφA which contains both commuting and anti-commuting fields, such as

φA =
(
uα

ξa

)
(1)

where uα(x, t) is assumed to be a commuting (bosonic) field whileξa(x, t) is an
anti-commuting (fermionic) field in 1+1 dimensions,α = 1,2, . . . ,m anda = 1,2, . . . , n.
A Z2 grading is introduced such that ˜p(φ) is equal to 0 ifφA is commuting or 1 if it is
anti-commuting.

The evolution equation of a continuous dynamical Hamiltonian system is given by

∂tφA =
∑
B

JAB
δH
δφB

=
∑
B

JABEB(H) (2)

whereEB is the Euler operator,

EB =
∞∑
k=0

(−∂x)
k ∂

∂k
xφB

(3)

andJ is a certain differential operator andH is a suitable functional. Functionals are defined
as modulo the integral of total derivative terms as

F =
∫

F [φA] dx (4)

whereF [φA] is the element of the algebra of functions ofx, the fieldsφA(x) and their
derivatives. The operatorJ defines a Poisson bracket as

{F,G} =
∑
AB

∫
[JABEB(G)]EA(F) dx. (5)

Here the ordering of the arbitrary functionalsF and G becomes important for the graded
systems. The fundamental Poisson bracket is

{φA(x), φB(x ′)} = JABδ(x − x ′) (6)

that leads to the following expression for the evolution equation (2):

∂tφA = {φA,H}. (7)

J is called a Hamiltonian operator if the Poisson bracket is skew-symmetric as

{F,G} = −(−1)p̃(F).p̃(G){G,F} (8)

where the grading ˜p(F) is equal to 0 (1) if an arbitrary functionalF is bosonic (fermionic)
and satisfies the Jacobi identity, which can be given as vanishing the prolongation of an
evolutionary vector fieldvJ� associated with every HamiltonianH, as follows [12, 16]:

prvJ�(I) = 0 (9)

whereI is the graded cosymplectic functional two-vector given as

I = 1

2

∑
A,B

∫
JAB�B ∧ �A dx. (10)
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Here the set�A = {θα, ηa} forms a basis of bosonic and fermionic uni-vectors, dual to the
one-forms{uα, ξa}, respectively. Note that

�A ∧ �B = −(−1)Ã.B̃�B ∧ �A (11)

and� ∧ � �= 0 if � is fermionic.
We now introduce the super Hamiltonian operators

J
(1)
AB =

(
δαβ∂x 0

0 δab

)
(12)

and

J
(2)
AB =

(
jαβ jαb

jaβ jab

)
(13)

where

jαβ = bαβ∂
3
x + 2Cαβγ uγ ∂x + Cαβγ uγ,x (14)

jαb = Kαbdξd∂x + Lαbdξd,x (15)

jaβ = Maβdξd∂x + Naβdξd,x (16)

jab = (ab∂
2
x + )abγ uγ (17)

whereuα,x = ∂xuα and all coefficients apart fromu(x, t) and ξ(x, t) are constants. It is
easy to see that the operatorJ

(1)
AB is a Hamiltonian operator because it is skew-symmetric and

Jacobi identity is trivially satisfied, there are no variable coefficients in its expression. On the
other hand, the second operatorJ

(2)
AB , which is skew-symmetric, containsx andt dependent

coefficients. In order to show that it is a Hamiltonian operator, the graded Jacobi identity
should be satisfied. Equation (9) for the second operator becomes

prvJ�(I) = 1

2

∫
prvJ�

(
J

(2)
AB

)
�B ∧ �A dx = 0. (18)

Here Einstein sum rule is employed and it will be used from now on. Equation (18) can be
written as

prvJ�(I) = 1

2

∫
[pr vJ�(jαβ)θβ ∧ θα + prvJ�(jαb)ηb ∧ θα

(19)
prvJ�(jaβ)θβ ∧ ηa + prvJ�(jab)ηb ∧ ηa ] dx = 0.

On the other hand, in general,

prvJ�

(
J

(2)
AB

)
=

∑
E,F,k

∂k
x

(
J

(2)
EF�F

) ∂

∂
(
∂k
xφE

) (
J

(2)
AB

)
. (20)

Herek = 0, 1. Furthermore,

prvJ�

(
J

(2)
AB

)
=

∑
k

{
∂k
x (jλρθρ)

∂

∂
(
∂k
xuλ

) (
J

(2)
AB

)
+ ∂k

x (jλeηe)
∂

∂
(
∂k
xuλ

) (
J

(2)
AB

)

+ ∂k
x (jdρθρ)

∂

∂
(
∂k
x ξd

) (
J

(2)
AB

)
+ ∂k

x (jdeηe)
∂

∂
(
∂k
x ξd

) (
J

(2)
AB

)}
. (21)

Introducing

Cαβλ = Cβαλ

)abλ = )baλ (22)

)abλKλcd = )acλKλbd
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and using equation (21) in (18), we finally obtain

prvJ�(I) =1

2

∫
{Cαβλbλρ(θρ,xxx ∧ θβ ∧ θα − 2θρ,xx ∧ θβ,xx ∧ θα − 2θρ,xx ∧ θβ,x ∧ θα,x)

+CαβλCλργ (uγ θρ,x ∧ θβ ∧ θα + uγ,xθρ, ∧ θβ ∧ θα

+ 4uγ θρ,x ∧ θβ,x ∧ θα + 2uγ,xθρ ∧ θβ,x ∧ θα)

+Mcβb(Lαac + Maαc − Naαc)ξbηa ∧ θβ,x ∧ θα,x

−Ncβb(Kαac − Lαac + Naαc)ξb,xηa,x ∧ θβ ∧ θα

+ [2CαβγKγba − Mcβa(Kαbc − Lαbc + Nbαc)]ξaηb,x ∧ θβ,x ∧ θα

+ [2CαβγLγba − Ncαa(Mbβc − Nbβc + Lβbc)]ξa,xηb ∧ θβ,x ∧ θα

+ [(ca(Kαbc + Mbαc) − 6)baλbλα]ηa,xx ∧ ηb,x ∧ θα

+ [(ca(Mbαc − Nbαc + Lαbc) − 2)baλbλα]ηa,xxx ∧ ηb ∧ θα

+
[
2)abλCλαβ + 1

2)caβ(Nbαc − 4Lαbc) − )cbβMaαc

]
uβηa ∧ ηb ∧ θα,x

+
[
)abλCλαβ − 1

2)caβ(Nbαc − 2Lαbc)
]
uβ,xηa ∧ ηb ∧ θα

+ 1
3)cbλ[3Lλad − Kλad ]ξd,xηa ∧ ηb ∧ ηc} dx = 0. (23)

As can easily be seen, there is a trivial solution for equation (23) in which all constant
coefficients vanish. There exists a non-trivial solution

bαλCλβγ = bβλCλαγ CαβλCλγρ = CαγλCλβρ Kλab = Maλb

Kλab = 3Lλab 2Maλb = 3Naλb (bcMaαc = 3bαβ)abβ (24)

McαbKβac = McβbKαac CαβγKγab = KαacKβbc.

ThusJ (2)
AB becomes a Hamilton operator with the set of equations (24). It describes the second

Poisson structure. For KdV equation one can easily show that the sum of two Hamilton
operators of bi-Hamiltonian structure is also a Hamilton operator because one of the Hamilton
operators (J = ∂x ) trivially satisfies Jacobi identity [16]. In our caseJ (1)

AB + J
(2)
AB satisfies the

graded Jacobi identity with the condition

)abβ − Maβb − 1

2
(Kβab + Lβab − Naβb) = 0 (25)

and using our solution (24), equation (25) becomes

)abβ + Naβb = 2Kβab. (26)

Furthermore, we obtain

)abβ = 4Lβab. (27)

Thus the Hamilton operatorsJ (1)
AB andJ (2)

AB constitute a super Hamiltonian pair. We can now
rewrite the second operator in terms ofLλab as

J
(2)
AB =

(
bαβ∂

3
x + Cαβγ (uγ ∂x + ∂xuγ ) Lαbc(2ξc∂x + ∂xξc)

Laβc(ξc∂x + 2∂xξc) (ab∂
2
x + 4Lλabuλ

)
. (28)

However, equations (24) and (25) provide information about algebra related to the evolution
equations. In section 3 we shall derive the corresponding evolution equations that are coupled
to the multi-component super KdV equations.
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3. The multi-component super KdV systems

Bi-Hamiltonian formalism suggests the existence of infinitely many conserved quantities{Hk}
satisfying the recursion relation∑

B

J
(2)
ABEB(Hk−1) =

∑
B

J
(1)
ABEB(Hk) (29)

wherek = 1,2,3, . . . . These infinitely many conserved quantities provide an extension of
super KdV hierarchy to multi-component super KdV hierarchy. We now introduce the first
two conserved quantities to obtain the first member of evolution equations as

H0 = 1

2

∫
[−δαβuαuβ + δabξaξb,x ] dx (30)

H1 = 1

2

∫
[−bαβuα,xuβ,x + Cαβγ uαuβuγ − (abξa,xξb,xx + 2Kαabuαξaξb,x ] dx. (31)

Then one can easily derive integrable super coupled integrable evolution equations, which
admit infinitely many conserved quantities due to the recursion relations (29), by using

∂tφA =
∑
B

J
(1)
ABEB(H1) =

∑
B

J
(2)
ABEB(H0). (32)

In this way we get the new class of integrable multi-component super KdV equations by using
equations (24) and (26) as follows:

uα,t = bαβuβ,xxx + 3Cαβγ uβ,xuγ + Kαabξaξb,xx (33)

ξa,t = (abξa + Kλab(ξbuλ,x + 2uλξb,x). (34)

In the bosonic limit when the fermionic variables vanish, the system reduces to multi-
component KdV systems, known as degenerate Svinolupov system, in whichbαβ is
non-diagonalizable [4,5]. In this case, one-component limit is the KdV equation. Furthermore,
if we choose the coefficientsb11 = −1, (11 = −4, C111 = 2 andK111 = 3 satisfying the
constraint equations (24) and variablesu1 = u andξ1 = ξ , equations (33) and (34) become

ut = −uxxx + 6uux + 3ξξxx (35)

ξt = −4ξxxx + 6uξx + 3uxξ. (36)

These are super KdV equations given in references [10, 11]. In other words, our equations
reduce to one of the known one-componentsuper KdV equations which consists of one bosonic
and one fermionic variables.

4. The multi-component super mKdV systems

In this section we first introduce a super extension of Miura transformation using the notation
of previous sections. The multi-component super Miura transformation is

uα = vα,x +
1

2
Cαβγ vβvγ + Kαbcεbεc (37)

ξa = εa,x +
1

3
Maλbvλεb (38)

where v(x, t) and ε(x, t) are new bosonic and fermionic variables, respectively. The
multi-component super mKdV equations can be obtained from the multi-component super
KdV equations by the multi-component super Miura transformations. This implies that
any solution of the multi-component super mKdV equations gives a solution of the multi-
component super KdV equations through the multi-component super Miura transformations.
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When we substitute the transformation (37) into equation (33), we get the multi-component
super mKdV equations

vα,t = −vα,xxx +
3

2
Cαβγ Cβλρvλvρvγ,x +

1

8
KβmnCαβγ (2vγ,xεmεn,x + vγ εmεn,xx)

+
1

4
Kαmnεn,xεm,xx (39)

εa,t = −4εa,xxx − Kβab(vβ,xxεb + 2vβ,xεb,x) + KβabCβλρ(vλvρεb,x + vλ,xvρεb) (40)

by employing the constraints (24) on the coefficients. As in the case of multi-component super
KdV equations, equations (39) and (40) reduce to

vt = ∂x

(
2v3 − vxx +

3

4
εεxx +

3

2
vεεx

)
(41)

εt = −4εxxx + (6vvx − 3vxx)ε + 6
(
v2 − vx

)
εx (42)

in the one-component limit by taking the coefficients asC111 = 2,K111 = 3 and the variables
asv1 = v andε1 = ε. This is the super extension of the mKdV equation given by Kuperschmidt
[10].

5. Conclusions

In this work we have found a new class of integrable multi-component super KdV equations.
It is shown that they are bi-super Hamiltonian. The graded Jacobi identity associated with the
Poisson structure defined by super Hamiltonian operators is satisfied by imposing constraints
(24) on the coefficients introduced in the super Hamiltonian operators. These constraints
could be important to describe the structure associated with our evolution equations. It is
natural to expect that such relations would also imply the existence of generalized symmetries.
Furthermore, by introducing a super Miura transformation a super extension of multi-
component mKdV equations is obtained. This system also possesses the structure described
by the constraints (24). We have shown that our equations are reduced to the well known
one-component super equations and multi-component and one-component bosonic equations.
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[5] Gürses M and Karasu A 1996Phys. Lett. A 214 21
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